[ | E-mail | Share ]
Contact: Dawn Peters
sciencenewsroom@wiley.com
781-388-8408
Wiley
New approach to identify microRNAs may benefit future studies of genetic networks
Researchers have identified a microRNA liver gene, miR-27b, which regulates lipid (cholesterol or fat) levels in the blood. This regulator gene controls multiple genes involved in dyslipidemiaabnormal blood cholesterol levels that can contribute to heart disease. Study details published in the February issue of Hepatology, a journal of the American Association for the Study of Liver Diseases (AASLD), describe a new in silico approach to identify the significance of microRNAs in regulating disease-related gene pathways.
The Human Genome Project (HGP) was completed in April, 2003 and the world had a map of the 3 billion DNA letters making up the human genome. One of the HGP leaders was Dr. Francis Collins, currently NIH Director and contributor to the present study. "The HGP provided the basic instruction book for human biology," explains Dr. Collins. "Further genomic studies, such as the investigation of microRNAs, have built upon the efforts of the HGP to explain how the genome carries out its functions, and helps identify genes involved in the development of disease."
For the present study, lead author Dr. Kasey Vickers from the NIH/NHLBI Lipoprotein Metabolism Section (presently at Vanderbilt University School of Medicine) and colleagues performed high-throughput small RNA sequencing of mouse liver and detected roughly 150 microRNAs. The team used a novel in silico approach to identify microRNA regulatory hub genes involved in lipid metabolism. In human and mouse livers miR-27b was determined to be the strongest hub with 27 predicted targets.
"We found liver miR-27b levels to be sensitive to high triglycerides (hyperlipidemia) in the blood and liver," said Dr. Vickers. The team reported a nearly 3-fold increase in miR-27b levels in the liver of mice on a high-fat diet, with 42% of calories from fat. In human liver tissue cells, researchers determined that miR-27b regulates mRNA and protein expression of key lipid-metabolism genes (Angptl3 and Gpam). Vickers added, "Using a mouse model of dyslipidemia and atherosclerosis, we found hepatic miR-27b and its target genes to be inversely altered, and thus contributing to risk for cardiovascular disease."
The senior author of the study, Dr. Praveen Sethupathy from the University of North Carolina at Chapel Hill School of Medicine, leads an interdisciplinary laboratory that weaves together computational and experimental approaches to understand the role of microRNAs in complex metabolic diseases. "MicroRNAs are thought to impart stability to gene networks, particularly in the face of changes to the environment, such as diet," he says. "MicroRNAs represent promising therapeutic targets for a variety of metabolic diseases, but a lot more work remains to be done in order to fully appreciate how and when they function."
In a related editorial published in this month's issue of Hepatology, Dr. Carlos Fernndez-Hernando from the New York University School of Medicine confirms the emergence of microRNAs in regulating cholesterol and fatty acid metabolism. He writes, "Altogether these data (by Vickers et al.) strongly suggest that miR-27b regulates lipid metabolism, but its role in regulating lipid levels in other cells, such as macrophages and neurons, remains unclear." Dr. Fernndez-Hernando highlights the importance of the new in silico approach used by the researchers to identify microRNAs in regulating genes involved in the same bodily process, suggesting this method could be used to identify microRNAs in controlling genetic networks.
###
This study and editorial are published in Hepatology. Media wishing to receive a PDF of the articles may contact sciencenewsroom@wiley.com.
Full citations: "MicroRNA-27b is a Regulatory Hub in Lipid Metabolism and is Altered in Dyslipidemia." Kasey C. Vickers, Bassem M. Shoucri, Michael G. Levin, Han Wu, Daniel S. Pearson, David Osei-Hwedieh, Francis S. Collins, Alan T. Remaley and Praveen Sethupathy. Hepatology; (DOI: 10.1002/hep.25846); Print Issue Date: February, 2013.
URL: http://doi.wiley.com/10.1002/hep.25846
Editorial: "The Emerging Role of miRNAs in the Regulation of Lipid Metabolism." Carlos Fernndez-Hernando. Hepatology; (DOI: 10.1002/hep.25960); Print Issue Date: February, 2013.
URL: http://doi.wiley.com/10.1002/hep.25960
Author Contact: To arrange an interview with Dr. Praveen Sethupathy, please contact Les Lang with UNC at llang@med.unc.edu or at 919-966-9366.
About the Journal
Hepatology is the premier publication in the field of liver disease, publishing original, peer-reviewed articles concerning all aspects of liver structure, function and disease. Each month, the distinguished Editorial Board monitors and selects only the best articles on subjects such as immunology, chronic hepatitis, viral hepatitis, cirrhosis, genetic and metabolic liver diseases and their complications, liver cancer, and drug metabolism. Hepatology is published on is published by Wiley on behalf of the American Association for the Study of Liver Diseases (AASLD). For more information, please visit http://wileyonlinelibrary.com/journal/hep.
About Wiley
Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley and its acquired companies have published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Wiley's global headquarters are located in Hoboken, New Jersey, with operations in the U.S., Europe, Asia, Canada, and Australia. The Company's Web site can be accessed at http://www.wiley.com. The Company is listed on the New York Stock Exchange under the symbols JWa and JWb.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Dawn Peters
sciencenewsroom@wiley.com
781-388-8408
Wiley
New approach to identify microRNAs may benefit future studies of genetic networks
Researchers have identified a microRNA liver gene, miR-27b, which regulates lipid (cholesterol or fat) levels in the blood. This regulator gene controls multiple genes involved in dyslipidemiaabnormal blood cholesterol levels that can contribute to heart disease. Study details published in the February issue of Hepatology, a journal of the American Association for the Study of Liver Diseases (AASLD), describe a new in silico approach to identify the significance of microRNAs in regulating disease-related gene pathways.
The Human Genome Project (HGP) was completed in April, 2003 and the world had a map of the 3 billion DNA letters making up the human genome. One of the HGP leaders was Dr. Francis Collins, currently NIH Director and contributor to the present study. "The HGP provided the basic instruction book for human biology," explains Dr. Collins. "Further genomic studies, such as the investigation of microRNAs, have built upon the efforts of the HGP to explain how the genome carries out its functions, and helps identify genes involved in the development of disease."
For the present study, lead author Dr. Kasey Vickers from the NIH/NHLBI Lipoprotein Metabolism Section (presently at Vanderbilt University School of Medicine) and colleagues performed high-throughput small RNA sequencing of mouse liver and detected roughly 150 microRNAs. The team used a novel in silico approach to identify microRNA regulatory hub genes involved in lipid metabolism. In human and mouse livers miR-27b was determined to be the strongest hub with 27 predicted targets.
"We found liver miR-27b levels to be sensitive to high triglycerides (hyperlipidemia) in the blood and liver," said Dr. Vickers. The team reported a nearly 3-fold increase in miR-27b levels in the liver of mice on a high-fat diet, with 42% of calories from fat. In human liver tissue cells, researchers determined that miR-27b regulates mRNA and protein expression of key lipid-metabolism genes (Angptl3 and Gpam). Vickers added, "Using a mouse model of dyslipidemia and atherosclerosis, we found hepatic miR-27b and its target genes to be inversely altered, and thus contributing to risk for cardiovascular disease."
The senior author of the study, Dr. Praveen Sethupathy from the University of North Carolina at Chapel Hill School of Medicine, leads an interdisciplinary laboratory that weaves together computational and experimental approaches to understand the role of microRNAs in complex metabolic diseases. "MicroRNAs are thought to impart stability to gene networks, particularly in the face of changes to the environment, such as diet," he says. "MicroRNAs represent promising therapeutic targets for a variety of metabolic diseases, but a lot more work remains to be done in order to fully appreciate how and when they function."
In a related editorial published in this month's issue of Hepatology, Dr. Carlos Fernndez-Hernando from the New York University School of Medicine confirms the emergence of microRNAs in regulating cholesterol and fatty acid metabolism. He writes, "Altogether these data (by Vickers et al.) strongly suggest that miR-27b regulates lipid metabolism, but its role in regulating lipid levels in other cells, such as macrophages and neurons, remains unclear." Dr. Fernndez-Hernando highlights the importance of the new in silico approach used by the researchers to identify microRNAs in regulating genes involved in the same bodily process, suggesting this method could be used to identify microRNAs in controlling genetic networks.
###
This study and editorial are published in Hepatology. Media wishing to receive a PDF of the articles may contact sciencenewsroom@wiley.com.
Full citations: "MicroRNA-27b is a Regulatory Hub in Lipid Metabolism and is Altered in Dyslipidemia." Kasey C. Vickers, Bassem M. Shoucri, Michael G. Levin, Han Wu, Daniel S. Pearson, David Osei-Hwedieh, Francis S. Collins, Alan T. Remaley and Praveen Sethupathy. Hepatology; (DOI: 10.1002/hep.25846); Print Issue Date: February, 2013.
URL: http://doi.wiley.com/10.1002/hep.25846
Editorial: "The Emerging Role of miRNAs in the Regulation of Lipid Metabolism." Carlos Fernndez-Hernando. Hepatology; (DOI: 10.1002/hep.25960); Print Issue Date: February, 2013.
URL: http://doi.wiley.com/10.1002/hep.25960
Author Contact: To arrange an interview with Dr. Praveen Sethupathy, please contact Les Lang with UNC at llang@med.unc.edu or at 919-966-9366.
About the Journal
Hepatology is the premier publication in the field of liver disease, publishing original, peer-reviewed articles concerning all aspects of liver structure, function and disease. Each month, the distinguished Editorial Board monitors and selects only the best articles on subjects such as immunology, chronic hepatitis, viral hepatitis, cirrhosis, genetic and metabolic liver diseases and their complications, liver cancer, and drug metabolism. Hepatology is published on is published by Wiley on behalf of the American Association for the Study of Liver Diseases (AASLD). For more information, please visit http://wileyonlinelibrary.com/journal/hep.
About Wiley
Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley and its acquired companies have published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Wiley's global headquarters are located in Hoboken, New Jersey, with operations in the U.S., Europe, Asia, Canada, and Australia. The Company's Web site can be accessed at http://www.wiley.com. The Company is listed on the New York Stock Exchange under the symbols JWa and JWb.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-02/w-sil020713.php
ufc 145 fight card ufc145 chimpanzee chimpanzee the lucky one pittsburgh pirates mariners
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.